A Novel Synthesis of Enantiomerically Pure 5,5,5,5′**,5**′**,5**′**-Hexafluoroleucine**

Xuechao Xing, Alfio Fichera, and Krishna Kumar*

*Department of Chemistry, Tufts Uni*V*ersity, 62 Talbot A*V*enue, Medford, Massachusetts 02155*

kkumar01@tufts.edu

Received January 17, 2001

¹²⁸⁵-**¹²⁸⁶**

ABSTRACT

6

A novel, short, and efficient synthesis of (*S***)-5,5,5,5**′**,5**′**,5**′**-hexafluoroleucine (6) in greater than 99% ee starting from the protected oxazolidine aldehyde 1 is described. The enantiomeric excess of the product was calculated from an NMR analysis of a dipeptide formed by reaction with a protected L-serine derivative. Furthermore, a racemic sample of** *N***-acylated hexafluoroleucine was enzymatically resolved by treatment with porcine kidney acylase I and was found to have the same optical rotation as a synthetic sample of 6.**

Selective fluorination of biologically active compounds is often accompanied by dramatic changes in physiological activities.¹ Fluorinated amino acids have been synthesized^{1c-h,7} and studied as potential inhibitors of enzymes and as therapeutic agents.2 Trifluoromethyl-containing amino acids acting as potential antimetabolites have also been reported.³

(2) Kollonitsch, J.; Patchett A. A.; Marburg, S.; Maycock, A. L.; Perkins, L. M.; Doldouras, G. A.; Duggan, D. E.; Aster, S. D. *Nature* **1978**, *274,* ⁹⁰⁶-908.

Am. Chem. Soc. **¹⁹⁵⁰**, *⁷²*, 3289-3289. (4) (a) Crick, F. H. C. *Acta Cyrstallogr.* **1953**, *6*, 689. (b) O'Shea, E. K.; Rutkowski, R.; Kim, P. S. *Science* **1989**, *243*, 538. (c) Lupas, A. *Trends Biochem. Sci.* **¹⁹⁹⁶**, *²¹*, 375-382. (d) Kohn, W. D.; Hodges, R. S. *Trends Biotechnol.* **¹⁹⁹⁸**, *¹⁶*, 379-389.

(6) For synthesis of α -amino acids derived from p-serine using a serine aldehyde equivalent, see: Blaskovich, M. A.; Lajoie, G. A. *J. Am. Chem. Soc.* **¹⁹⁹³**, *¹¹⁵*, 5021-5030.

(7) Lazar, J.; Sheppard, W. A. *J. Med. Chem.* **1968**, *11*, 138.

10.1021/ol015567e CCC: \$20.00 © 2001 American Chemical Society **Published on Web 04/03/2001**

We have recently described the de novo design of peptides based on the coiled coil motif⁴ where the residues lining the interface between helices have highly fluorinated side chains.5 These peptides form well-defined coiled coil structures with higher thermal stability than their natural hydrocarbon counterparts. To create protein structures with very highly fluorinated cores, we required an efficient and inexpensive synthesis of **6** in enantiomerically pure form.

Herein, we report a novel and efficient synthesis of (*S*)- 5,5,5,5′,5′,5′-hexafluoroleucine starting from commerically available D-serine.⁶ While there is one existing report of the synthesis of racemic hexafluoroleucine⁷ and another recent report detailing the preparation of 6 in 81% ee,⁸ we sought a better method to obtain hexafluoroleucine in >99% ee for direct use in solid-phase peptide synthesis. Our synthesis commenced from the oxazolidine aldehyde **1** (Garner aldehyde) which served as a chiral, nonracemic synthon.⁹ Aldehyde **1** is derived from D-serine, was obtained using a slight modification of a published procedure, and is exceptionally stable toward racemization in subsequent steps.¹⁰ In a key step, aldehyde **1** was converted to the bis-trifluorom-

^{(1) (}a) Welch, T.; Eswarakrishnan, S. *Fluorine in Bioorganic Chemistry*; Wiley-Interscience: New York, 1991 and references therein. (b) *Fluorinecontaining Amino Acids*; Kukhar′, V. P., Soloshonok, V. A., Eds.; John Wiley & Sons: Chichester, 1994. (c) Williams, R. M. *Synthesis of Optically Active* α-Amino Acids; Pergamon Press: Oxford, 1989. (d) Ojima, I.; Kato, K.; Nakahashi, K.; Fuchikami, T.; Fujita, M. *J. Org. Chem.* **¹⁹⁸⁹**, *⁵⁴*, 4511- 4522. (e) Tsushima, T.; Kawada, K.; Ishihara, S.; Uchida, N.; Shiratori, O.; Higaki, J.; Hirata, M. *Tetrahedron* **¹⁹⁸⁸**, *⁴⁴*, 5375-5387. (f) Weinges, K.; Kromm, E. *Liebigs Ann. Chem.* **1985**, 90–102. (g) Eberle, M. K.; Keese, R · Stoeckli-Evans, H. *Helv. Chim. Acta* **1998**, 81, 182–186. (b) Tolman R.; Stoeckli-Evans, H. *Hel*V*. Chim. Acta* **¹⁹⁹⁸**, *⁸¹*, 182-186. (h) Tolman, V. *Amino Acids* **¹⁹⁹⁶**, *¹¹*, 15-36.

^{(3) (}a) Walborsky, H. M.; Baum, M. E. *J. Am. Chem. Soc.* **1958**, *80*, ¹⁸⁷-192. (b) Walborsky, H. M.; Baum, M.; Loncrini, D. F. *J. Am. Chem. Soc.* **¹⁹⁵⁵**, *⁷⁷*, 3637-3640. (c) Hill, H. M.; Towne, E. B.; Dickey, J. B. *J.*

⁽⁵⁾ Bilgicer, B.; Fichera, A.; Kumar, K. *J. Am. Chem. Soc.*, in press.

⁽⁸⁾ Zhang, C.; Ludin, C.; Eberle, M. K.; Stoeckli-Evans, H.; Keese, R. *Hel*V*. Chim. Acta* **¹⁹⁹⁸**, *⁸¹*, 174-181.

^{(9) (}a) Garner, P.; Park, J. M. *J. Org. Chem.* **¹⁹⁸⁷**, *⁵²*, 2361-2364. (b) Garner, P.; Park, J. M. *J. Org. Chem.* **¹⁹⁸⁸**, *⁵³*, 2979-2984. (c) Garner, P.; Park, J. M.; Malecki, E. *J. Org. Chem.* **¹⁹⁸⁸**, *⁵³*, 4395-4398. (d) Angrick, M. *Montash. Chem.* **¹⁹⁸⁵**, *¹¹⁶*, 645-649.

ethyl olefin **2** by a Wittig reaction in 92% yield (Scheme 1).¹¹ The ylide for this reaction is the phosphonium analogue

a Reagents and conditions: (a) PPh₃, $[(CF_3)_2C]_2S_2$, Et_2O , -78 $^{\circ}C \rightarrow$ rt, 3 d, 92%; (b) H₂, 10% Pd/C, THF, 98%; (c) TsOH, MeOH, rt, 1 d, 80%; (d) PDC, DMF, 18 h, 75%; (e) 40% CF_3CO_2H/CH_2Cl_2 ; HCl, 10 min, rt, >95%.

of Middleton's phosphorane,¹² generated in situ from tetrakis-(trifluoromethyl)-1,3-dithietane13 and triphenylphosphine.14,15 The olefin **2** was reduced by catalytic hydrogenation over Pd/C to give the suitably substituted oxazolidine **3** in 98% yield. Next, the oxazolidine was subjected to acid-catalyzed ring cleavage unmasking the alcohol **4**. Alcohol **4** was oxidized to the carboxylic acid **5** using pyridinium dichromate, and in the final step, the *tert*-butyloxycarbonyl group was removed using trifluoroacetic acid to yield the hydro-

(12) Middleton, W. J.; Sharkey, W. H. *J. Org. Chem.* **1965**, *30*, 1384. (13) Anello, L. G.; Vanderpuy, M. *J. Org. Chem.* **¹⁹⁸²**, *⁴⁷*, 377-378. chloride salt of the desired α -amino acid 6. While the last deprotection step was carried out in order to verify the optical purity of **6**, the Boc-protected amino acid **5** could be directly used for solid-phase synthesis of peptides.

The optical purity of synthetic **6** was verified in two ways. A racemic sample of **5** (prepared using a different route) and **5** obtained through the scheme described here were separately coupled to a protected methyl ester of L-serine (**7**), and the resulting dipeptide was analyzed using ¹ H NMR

spectroscopy. In the case of the dipeptide obtained from racemic **5**, three signals corresponding to the *t*-Boc group, the methyl ester, and the *tert*-butyl ether were split into two peaks presumably due to formation of two diastereomers, whereas **5** from the present synthesis yielded a dipeptide with only one set of signals for the three sets of protons described above. Furthermore, racemic **6** was *N*-acylated and enzymatically resolved using porcine kidney acylase I [EC 3.5.1.14] to yield the α -*S* isomer exclusively.¹⁶ The optical rotation of **6** obtained in this manner and that of the synthetic sample were identical. Thus, as far as we can tell, the synthesis proceeds in >99% ee. The NMR data for **⁶** agree with those reported previously. $8,17$ The construction of 5,5,5,5′,5′,5′-(*R*)-hexafluoroleucine is similarly achieved from L-serine.

In summary, we have developed an efficient synthesis of enantiomerically pure 5,5,5,5′,5′,5′-hexafluoroleucine. Studies detailing the incorporation of this building block into peptides and subsequent characterization will be reported shortly.

Acknowledgment. The authors thank the Faculty Research Awards Committee (Tufts) and Tufts University for support. We also thank Prof. Marc d'Alarcao for helpful and stimulating discussions.

Supporting Information Available: Spectral characterization of compounds **²**-**⁶** and dipeptide **⁸** obtained from the reaction of **7** and **6**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL015567E

⁽¹⁰⁾ Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. *Synthesis* **1998**, 1707-1709.
(11) Korhummel, C.; Hanack, M. Chem. Ber. 1989, 122, 2187-2192.

⁽¹¹⁾ Korhummel, C.; Hanack, M. *Chem. Ber.* **¹⁹⁸⁹**, *¹²²*, 2187-2192. **Typical procedure for the coupling reaction:** To a stirred solution of the Garner aldehyde **1** (7.0 g, 31.0 mmol) and PPh₃ (57 g, 217 mmol) in dry Et2O (300 mL) was added 2,2,4,4-tetrakis(trifluoromethyl)-1,3-dithietane (39.5 g, 108.5 mmol) at -78 °C under argon. The mixture was stirred for 3 d while being slowly warmed to room temperature. The reaction slowly accumulated an insoluble white solid which was filtered, and the filtrate was concentrated. The residue was further dissolved in *n*-pentane (300 mL) and filtered again to remove insoluble impurities. After removal of the solvent, the residue was subjected to flash column chromatography using *n*-pentane/Et₂O (6/1) as eluant to give pure 2 as a pale yellow oil (10.4 g, 92%).

^{(14) (}a) Burton, D. J.; Yang, Z. Y.; Qiu, W. M. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, ¹⁶⁴¹-1715. (b) Dixon, D. A.; Smart, B. E. *J. Am. Chem. Soc.* **¹⁹⁸⁶**, *¹⁰⁸*, ⁷¹⁷²-7177. (c) Burton, D. J.; Inouye, Y. *Tetrahedron Lett.* **¹⁹⁷⁹**, 3397- 3400.

⁽¹⁵⁾ Kobayashi, Y.; Nakajima, M.; Nakazawa, M.; Taguchi, T.; Ikekawa, N.; Sai, H.; Tanaka, Y.; Deluca, H. F. *Chem. Pharm. Bull.* **¹⁹⁸⁸**, *³⁶*, 4144- 4147.

^{(16) (}a) Chenault, H. K.; Dahmer, J.; Whitesides, G. M. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹¹*, 6354-64. (b) Fu, S. C. J.; Birnbaum, S. M. *J. Am. Chem. Soc.* **¹⁹⁵³**, *⁷⁵*, 918-920.

⁽¹⁷⁾ Both the synthetic sample and the enzyme-resolved samples of **6** had $[\alpha]^{26.0}$ _D = +5.6° (*c* 1, CH₃OH), a value smaller in magnitude than that reported previously (ref 8).