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ABSTRACT

A novel, short, and efficient synthesis of (S)-5,5,5,5′,5′,5′-hexafluoroleucine (6) in greater than 99% ee starting from the protected oxazolidine
aldehyde 1 is described. The enantiomeric excess of the product was calculated from an NMR analysis of a dipeptide formed by reaction with
a protected L-serine derivative. Furthermore, a racemic sample of N-acylated hexafluoroleucine was enzymatically resolved by treatment with
porcine kidney acylase I and was found to have the same optical rotation as a synthetic sample of 6.

Selective fluorination of biologically active compounds is
often accompanied by dramatic changes in physiological
activities.1 Fluorinated amino acids have been synthesized1c-h,7

and studied as potential inhibitors of enzymes and as
therapeutic agents.2 Trifluoromethyl-containing amino acids
acting as potential antimetabolites have also been reported.3

We have recently described the de novo design of peptides
based on the coiled coil motif4 where the residues lining the
interface between helices have highly fluorinated side
chains.5 These peptides form well-defined coiled coil struc-
tures with higher thermal stability than their natural hydro-
carbon counterparts. To create protein structures with very
highly fluorinated cores, we required an efficient and
inexpensive synthesis of6 in enantiomerically pure form.

Herein, we report a novel and efficient synthesis of (S)-
5,5,5,5′,5′,5′-hexafluoroleucine starting from commerically
availableD-serine.6 While there is one existing report of the
synthesis of racemic hexafluoroleucine7 and another recent
report detailing the preparation of6 in 81% ee,8 we sought
a better method to obtain hexafluoroleucine in>99% ee for
direct use in solid-phase peptide synthesis. Our synthesis
commenced from the oxazolidine aldehyde1 (Garner alde-
hyde) which served as a chiral, nonracemic synthon.9

Aldehyde1 is derived fromD-serine, was obtained using a
slight modification of a published procedure, and is excep-
tionally stable toward racemization in subsequent steps.10 In
a key step, aldehyde1 was converted to the bis-trifluorom-
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ethyl olefin 2 by a Wittig reaction in 92% yield (Scheme
1).11 The ylide for this reaction is the phosphonium analogue

of Middleton’s phosphorane,12 generated in situ from tetrakis-
(trifluoromethyl)-1,3-dithietane13 and triphenylphosphine.14,15

The olefin 2 was reduced by catalytic hydrogenation over
Pd/C to give the suitably substituted oxazolidine3 in 98%
yield. Next, the oxazolidine was subjected to acid-catalyzed
ring cleavage unmasking the alcohol4. Alcohol 4 was
oxidized to the carboxylic acid5 using pyridinium dichro-
mate, and in the final step, thetert-butyloxycarbonyl group
was removed using trifluoroacetic acid to yield the hydro-

chloride salt of the desiredR-amino acid6. While the last
deprotection step was carried out in order to verify the optical
purity of 6, the Boc-protected amino acid5 could be directly
used for solid-phase synthesis of peptides.

The optical purity of synthetic6 was verified in two ways.
A racemic sample of5 (prepared using a different route)
and 5 obtained through the scheme described here were
separately coupled to a protected methyl ester ofL-serine
(7), and the resulting dipeptide was analyzed using1H NMR

spectroscopy. In the case of the dipeptide obtained from
racemic5, three signals corresponding to thet-Boc group,
the methyl ester, and thetert-butyl ether were split into two
peaks presumably due to formation of two diastereomers,
whereas5 from the present synthesis yielded a dipeptide with
only one set of signals for the three sets of protons described
above. Furthermore, racemic6 was N-acylated and enzy-
matically resolved using porcine kidney acylase I [EC
3.5.1.14] to yield theR-S isomer exclusively.16 The optical
rotation of6 obtained in this manner and that of the synthetic
sample were identical. Thus, as far as we can tell, the
synthesis proceeds in>99% ee. The NMR data for6 agree
with those reported previously.8,17 The construction of
5,5,5,5′,5′,5′-(R)-hexafluoroleucine is similarly achieved from
L-serine.

In summary, we have developed an efficient synthesis of
enantiomerically pure 5,5,5,5′,5′,5′-hexafluoroleucine. Studies
detailing the incorporation of this building block into peptides
and subsequent characterization will be reported shortly.
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Scheme 1a

a Reagents and conditions: (a) PPh3, [(CF3)2C]2S2, Et2O, -78
°C f rt, 3 d, 92%; (b) H2, 10% Pd/C, THF, 98%; (c) TsOH, MeOH,
rt, 1 d, 80%; (d) PDC, DMF, 18 h, 75%; (e) 40% CF3CO2H/CH2Cl2;
HCl, 10 min, rt,>95%.
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